Service Manuals, User Guides, Schematic Diagrams or docs for : Tektronix publikacje TekDigitalConcepts

<< Back | Home

Most service manuals and schematics are PDF files, so You will need Adobre Acrobat Reader to view : Acrobat Download Some of the files are DjVu format. Readers and resources available here : DjVu Resources
For the compressed files, most common are zip and rar. Please, extract files with Your favorite compression software ( WinZip, WinRAR ... ) before viewing. If a document has multiple parts, You should download all, before extracting.
Good luck. Repair on Your own risk. Make sure You know what You are doing.




Image preview - the first page of the document
TekDigitalConcepts


>> Download TekDigitalConcepts documenatation <<

Text preview - extract from the document
Digit a1
Concepts




 A       B       X
 0
     I

         0
             I

                 0     -
 0
 I
         I
         0
                 0
                 0
                     X=AB=AB
 I       I       I

         B       Y     -
                       --
         00
          1          Y=AB=A+B
         I       I
         0       I
 I       I       I
     OTHER BOOKS IN THIS SERIES:


           Circuit Concepts
         Power Supply Circuits
              062-0888-01

    Oscilloscope Cathode-Ray Tubes
              062-0852-01

Storage Cathode-Ray Tubes and Circuits
              062-0861-01

Television Waveform Processing Circuits
              062-0955-00

           Digital Concepts
              062-1030-00

      Spectrum Analyzer Circuits
              062-1055-00

     Oscilloscope Trigger Circuits
              062-1056-00

       Sweep Generator Circuits
              062-1098-00

        Measurement Concepts
     Information Display Concepts
              062-1005-00

        Semiconductor Devices
             062-1009-00

   Television System Measurements
             062-1064-00

   Spectrum Analyzer Measurements
             062-1070-00

           Engine Analysis
             062-1074-00
 DIGITAL
CONCEPTS
          BY
LEONARD W. BELL




 Significant Contributions
         by
  JOHN W. SHEPPARD
FIRST EDITION SECOND PRINTING JUNE 1969
              062-1030-00
              PRICE $1.00




                              TEKTRONIX, INC.; 1968
                           BEAVERTON, OREGON
                           ALL RIGHTS RESERVED
                   CONTENTS




    INTRODUCTION              1

    THE BINARY NUMBER SYSTEM            3

    BOOLEAN ALGEBRA               15

    NAND GATE, NOR GATE, AND F L I P F L O P        31

    IMPLEMENTING LOGIC FUNCTIONS               47

    IMPLEMENTING LOGIC C I R C U I TS
            USING INTEGRATED C I R C U IT S         71

7   COUNTING C I R C U I TS        91

8   COUNTER READOUT C I R C U I TS      107

    INDEX        125
                    FORWARD


This the first edition o f the Tektronix Digital Concepts book
uses Negative True Logic when explaining circuits throughout
the book. This is due t o the fact that most digital instruments
designed at Tektronix prior t o the publication of this book
have had their circuits and logic diagrams explained in terms
of Negative True Logic.

This is not meant t o imply that Tektronix has standardized on
Negative True Logic. There are times when Positive True Logic
may be the more natural form t o use.

The content of the book is as valid for explaining the concept
of one system as for the other.
                                                                                      1


a
                               INTRODUCTION




Automated o r programmed d e v i c e s u s i n g i n t e g r a t e d
l o g i c c i r c u i t s (IC) become more common d a i l y . The
e n g i n e e r o r t e c h n i c i a n whose background l i e s l a r g e l y
w i t h c o n v e n t i o n a l o r analog-type c i r c u i t r y can have
d i f f i c u l t y u n d e r s t a n d i n g d i g i t a l diagrams f i l l e d
w i t h odd-shaped symbols. Most p e o p l e w i t h a n
e l e c t r o n i c s background a r e t r a i n e d t o u s e schematic
diagrams which r e q u i r e c o n s i d e r a t i o n of each
i n d i v i d u a l component and i t s c o n t r i b u t i o n toward t h e
o p e r a t i o n of t h e c i r c u i t .        I n l o g i c c i r c u i t r y as
implemented t o d a y , o u r p o i n t of i n t e r e s t i s s h i f t e d
upward an o r d e r of magnitude. R a t h e r t h a n c o n s i d e r i n g
each i n d i v i d u a l b i t and p i e c e , e n t i r e c i r c u i t s a r e
s u p p l i e d i n i n d i v i d u a l packages.             It i s n o t n e c e s s a r y
t o know t h e exact c i r c u i t c o n f i g u r a t i o n of t h e
p a r t i c u l a r d e v i c e because t h e d e v i c e i s e n c a p s u l a t e d .
Consider t h e F a i r c h i l d 914 NAND g a t e . Within t h e
c a p s u l e a r e s i x t r a n s i s t o r s and numerous a s s o c i a t e d
r e s i s t o r s . The o n l y access we have t o t h e s e
t r a n s i s t o r s and r e s i s t o r s i s through t h e e i g h t p i n s .
Therefore s i g n a l - t r a c i n g t h e c i r c u i t r y w i t h i n t h e I C
( o r c h i p as i t i s o f t e n c a l l e d ) i s i m p o s s i b l e .           It
i s n e c e s s a r y t o u n d e r s t a n d t h e r e l a t i o n s h i p between
t h e i n p u t and o u t p u t s i g n a l s , b u t no more. S i n c e w e
cannot r e p a i r t h e 914 w e can o n l y r e p l a c e i t as a u n i t .
T h i s i s u n i v e r s a l l y t r u e of p r e s e n t l y a v a i l a b l e
integrated circuitry.

T h i s D i g i t a l Concepts book w i l l h e l p t h e b e g i n n e r t o
approach d i g i t a l i n s t r u m e n t s from t h e s t a n d p o i n t of
c i r c u i t b l o c k s r a t h e r t h a n i n d i v i d u a l components.
W b e g i n by reviewing t h e c o n c e p t s of t h e decimal
  e
and b i n a r y number systems. W e n e x t s t u d y t h e r u l e s
of Boolean a l g e b r a and i t s a p p l i c a t i o n t o t h e f i e l d
of d i g i t a l l o g i c c i r c u i t r y . W e t h e n p r e s e n t t h e
a p p l i c a t i o n of t h e a l g e b r a t o t h e d e s i g n ,
s i m p l i f i c a t i o n , and u n d e r s t a n d i n g of t h e s e c i r c u i t s .
2



    To the designer, applications of Boolean algebra
    involve the basic design and simplification of a
    particular series of functions. He begins with a
    series of statements of what a circuit is to perform
    and implements these statements in a logic circuit.
    Determining a first approximation of the circuit,
    the designer next applies the principles of Boolean
    algebra to simplify. After simplification the
    resulting Boolean equations are translated again into
    circuitry. Frequently the second design is simpler
    and therefore less expensive.
    The user of the completed instrument has other
    concerns. For him the circuits are already designed.
    His major problem is to interpret instrument operation
    from the diagrams supplied. He is required to
    understand the sometimes complicated interconnecting
    of the various IC's to determine the scheme of
    operation. This is particularly necessary in
    troubleshooting the complete instrument. Since most
    digital instruments available today were designed
    using the principles of Boolean algebra, diagrams
    supplied use logic symbols. To realize what the
    symbols mean and gain a finer appreciation for digital
    techniques, the technician must also be familiar
    with the basic principles of Boolean algebra. From
    the technician's standpoint, however, the methods of
    simplifying a device are of secondary importance.

    This book concentrates on the interpretation of
    existing designs, although some of the principles
    that enter into completing the design are mentioned.
    Having considered basic principles of Boolean algebra
    and the basic symbology, we next procede to more
    complex designs. Finally, selected circuits taken
    from existing Tektronix digital instruments are
    analyzed. The book does not explain the overall
    operation of such instruments, but concentrates on
    those areas which are common, such as counters and
    registers.

    A thorough study of the book should accelerate the
    student's understanding of digital instruments.
                                                               3




                     THE BINARY NUMBER SYSTEM




           Digital instruments such as the digital voltmeter,
           the frequency counter, and the analog-to-digital
           converter may be broken down into hundreds (or
           thousands) of switching devices. A switch has two
           stable conditions, "on" and ''off . I t When examining
           devices containing many switches, the decimal system
           is unhandy. Since the switch is a two-state device,
           a counting or numbering system based upon the value
           two is convenient. Such a numbering system is called
binary     the binary number system. Although unfamiliar to the
number     average person, the binary number system is logical
system     and easily learned.
dec im I
      a    In the decimal number system ten symbols are used:
number     0, 1, 2, 3 , 4 , 5 , 6, 7 , 8 , and 9. A person counting
system
           paper clips, for example, and writing down the count,
           writes 0, 1, 2, 3, 4 , 5 , 6 , 7 , 8, 9.

           For the tenth clip he has run out of symbols,
           therefore, he starts again with 0 and places a 1 to
           the left of the zero indicating that the count has
           reached 10 one time. The next count is 11, indicating
           1 ten + 1 one = 11. When the count reaches twenty,
           note that the right-hand column begins with 0 again
           but this time a 2 is written to the left of 0. This
           indicates that the count has gone to ten a total of
           two times. The symbol 63 indicates 6 tens + 3 ones.
           Note that at the count 99, we have again exhausted
           the symbols so we repeat the change which occurred
           at ten and write 100 indicating 1 hundred + 0 tens +
           0 ones.

           Note that the change points are even powers of ten
           which are indicated lo1 = 10; lo2 = 100; lo3 = 1,000;
           lo4 =: 10,000, etc. In a written number such as
           10,349 we can determine the various powers of 10
           which the number represents by the position of the
           written numbers, as 1 x l o 4 + 0 x lo3 + 3 x l o 2 +
           4 x 101 + 9 x 100.
 4




             I n t h e b i n a r y numbering system o n l y two symbols are
             used. Although t h e symbols a r e c o m p l e t e l y a r b i t r a r y
             w e u s e t h e f i r s t two symbols of t h e A r a b i c numbering
             system i n o r d e r t o a v o i d having t o memorize new
             symbols. To see how b i n a r y c o u n t i n g works l e t u s
             a g a i n assume a p e r s o n i s t o count p a p e r c l i p s and i s
             t o w r i t e t h e r u n n i n g t o t a l i n b i n a r y form. H e b e g i n s
             by w r i t i n g 0 i n d i c a t i n g t h a t h e h a s n o t counted y e t .
             H e c o u n t s t h e f i r s t c l i p and writes 1. H e now h a s
             on h i s paper 0 , 1. When h e c o u n t s t h e second c l i p
             what d o e s h e do? I n t h e b i n a r y system t h e r e are
             o n l y two symbols, t h e r e f o r e , h e r e s o r t s t o t h e same
             method used i n t h e decimal system, h e w r i t e s a 0 and
             p l a c e s a 1 t o t h e l e f t i n d i c a t i n g h e h a s counted t o
             two 1 t i m e .       A t t h e count of t h r e e h e w r i t e s 1 1
             i n d i c a t i n g 1 two  +    1 one = t h r e e . A t t h e count of
             f o u r h e i s a g a i n o u t of symbols s o h e writes 100
             indicating 1 four           +    0 twos + 0 ones. A t t h e count
             of f i v e h e w r i t e s 101 i n d i c a t i n g 1 f o u r    +0 twos       +
             1 one and s o h e c o n t i n u e s u n t i l a t t h e count of seven
             h e writes 1 1 Again h e h a s used a l l symbols i n a l l
                                 1 .
             columns s o he w r i t e s 1000, i n d i c a t i n g 1 e i g h t        0+
             fours    +      0 twos + 0 ones. Look a t F i g . 2-1, which
             shows t h e b i n a r y count a l o n g w i t h t h e same count i n
             d e c i m a l form.

             Note t h a t t h e p o s i t i o n n o t a t i o n i d e a i s v a l i d f o r a
             number i n b i n a r y form, e x c e p t t h a t e a c h p o s i t i o n i s
             based upon a power of two. For example, 2010 i s
             101002 ( t h e s u b s c r i p t s a r e used t o i n d i c a t e t h e r a d i x
             b e i n g used. The r a d i x of a numbering system i s
             simply t h e number of symbols t h a t i t u s e s . )

             101002 = 1 s i x t e e n + 0 e i g h t s + 1 f o u r  0 twos ++
             0 ones which could a l s o b e w r i t t e n :    101002 = 1 x 2 4 -t
             0 x 2 3 + 1 x 2' + 0 x 2 l             +
                                                 0 x 2O.      (any number t o
             t h e z e r o power e q u a l s 1)

binary-to-   I n t h e s t u d y of d i g i t a l c i r c u i t s i t w i l l b e n e c e s s a r y
dec i ma I   sometimes t o b e a b l e t o c o n v e r t a b i n a r y form number
conversion   t o decimal form. With t h e a i d of a power-of-two c h a r t
             t h i s c a n b e accomplished v e r y e a s i l y .
                                                                                  5



Consider t h e number 1101. T h i s c a n b e r e a d u s i n g
t h e p o s i t i o n v a l u e of e a c h symbol as 1 x Z 3 + 1 x Z 2                  +
0 x 2 l + 1 x 2'.              R e f e r r i n g t o t h e t a b l e i n F i g . 2-1:
                              l x 2 3 =      8
                              l x 2 2 =      4
                              O x 2 1 =      0
                              l x 2 0 =      1
                                             1310 i s t h e number i n
                                                  d e c i m a l form.

                    DECIMAL                            B I NARY

                        0                                  0
                        I                                  1
                        2                                 10
                        3                                 11
                        4                               100
                        5                               101




        2
        1
                        6                               1 IO
                        1                               111
        I               8                I             1000             1



                                                       1100
                                                       1101
                                                       1110
                       15                              1111




 I>
                       16                             10000
                       17                             1000 I
        I              18                I           10010              1
                                                     1001 1
                                                     10100
                                                     10101
                                                     10110
                                                     101 1 1
                                                     11000
                      25                             11001
                      26                             1 I010
                      27                             11011
                      28                             11100
                      29                             1 I101
                      30                             11110
                      31                             11111
                      32                            100000

      Fig. 2-1. Comparison of binary and decimal
                numbers.
6


            Comparing t h e same number i n b i n a r y and decimal forms
            shows t h a t t h e b i n a r y form i s cumbersome i n t h a t i t
            t a k e s many more d i g i t s t o e x p r e s s a number. R e f e r
            back t o F i g . 2-1, and n o t i c e t h a t 3210 t a k e s 6 d i g i t s
            i n b i n a r y form. Why t h e n do d i g i t a l i n s t r u m e n t s u s e
            t h e b i n a r y system? E l e c t r o n i c d e v i c e s and decimal
            c o u n t i n g are n o t v e r y c o m p a t i b l e . Although c i r c u i t s
            can b e b u i l t t o u s e base-10 v a l u e s , t h e c i r c u i t r y
            i s q u i t e complex and i n v o l v e s t h e u s e of t e n d i f f e r e n t
            voltage levels.

            S i n c e a c t i v e e l e c t r o n i c d e v i c e s c a n o p e r a t e as s w i t c h e
            two-voltage-level c i r c u i t s a r e e a s i l y made. I n
            a d d i t i o n t h e s e d e v i c e s c a n b e made t o s w i t c h a t r a t e s
            of m i l l i o n s p e r second. It i s s i m p l i c i t y and speed
            which makes t h e u s e of t h e b i n a r y system p r a c t i c a l
            i n electronics.

            The o p e r a t i o n o r programming of d i g i t a l i n s t r u m e n t s
            o f t e n r e q u i r e s t h a t v e r y l o n g b i n a r y numbers b e used.
            For convenience, c e r t a i n terms a r e used t o i d e n t i f y
    bit     p a r t s of t h e s e numbers. The t e r m bit i s used t o
            i d e n t i f y a binary d i g i t .         ( B i t i s d e r i v e d from BInary
 word       digiT.)         The t e r m character i s a group of b i t s . The
            t e r m word r e f e r s t o t h e t o t a l number of b i t s r e q u i r e d
            by a p a r t i c u l a r i n s t r u m e n t .

            For example, t h e T e k t r o n i x Type 240 Program C o n t r o l
            U n i t i s d e s i g n e d t o p r o c e s s a b i n a r y number which i s
            192 b i t s l o n g . The complete number i s c a l l e d a word
            and t h e Type 240 i s s a i d t o u s e a 1 9 2 - b i t word.
            Because of t h e extreme l e n g t h of t h e word, f o r
            convenience i t i s d i v i d e d i n t o groups of 4 b i t s .
character   Each 4 - b i t group i s c a l l e d a c h a r a c t e r . Hence t h e
            Type 240 i s a l s o s a i d t o u s e a 4 8 - c h a r a c t e r word.

            D i g i t a l i n s t r u m e n t s u s e d a t a and i n s t r u c t i o n s i n
            b i n a r y form. Humans, however, u s e decimal numbers
binary      and a l p h a b e t i c l e t t e r s . T h e r e f o r e , v a r i o u s codes
codes       have been d e s i g n e d t o f a c i l i t a t e communication w i t h
            d i g i t a l d e v i c e s . These codes a r e formed by t a k i n g
            groups of b i t s and a s s i g n i n g each unique combination
            a p a r t i c u l a r l e t t e r , symbol o r d e c i m a l number. There
            a r e many codes i n e x i s t e n c e , o n l y a few of which w i l l
            be considered here.

            Some b i n a r y codes u s e a number w e i g h t i n g scheme.
            The s i m p l e s t code c a l l e d p u r e b i n a r y u s e s t h e e x a c t
            p o s i t i o n v a l u e of e a c h b i n a r y d i g i t as t h e weight
                                                                                         7




                         I         DECIMAL
                                                  I           BCD
                                                                             I
                         I             0          I           0000           I
                                       1                      0001


                                       3                      001 1
                                       4                      01 00
                                       5                      0101




                             Fig. 2 - 2 .    8 , 4 , 2 , 1 BCD code.



            value.       For example, t h e number 1510 i s w r i t t e n i n
            b i n a r y a s 1 1 . T h i s number i s r e a d as 1 x 8
                             1 1                                                   +
            1x 4     +   1x 2      +
                                 1 x 1 = 15. P u r e b i n a r y ( a l s o c a l l e d
            hexadecimal) i s s a i d t o have a n 8, 4 , 2 , 1 w e i g h t .
            Many o t h e r weight schemes a r e used.        Examples i n c l u d e
            7 , 4 , 2 , 1; 4 , 2 , 2 ' , 1 and 6 , 3 , 2 , 1, 0 (5 b i t s ) .

            O t h e r codes a r e unweighted which means t h a t t h e
            d e c i m a l e q u i v a l e n t o f t h e b i n a r y number i s determined
            o n l y by a n a r b i t r a r i l y a s s i g n e d v a l u e . An example
            of t h i s t y p e i s t h e Excess-3 code.

binary-     The s i m p l e s t code t o u n d e r s t a n d i s t h e binary-coded
coded       d e c i m a l , which i s a b b r e v i a t e d BCD. The BCD code u s e s
dec ima I   f o u r b i n a r y b i t s p e r c h a r a c t e r and a weight scheme
            of 8, 4 , 2 , 1. Each c h a r a c t e r h a s t h e d e c i m a l v a l u e
            that the four b i t s represent.                    The code i s shown i n
            F i g . 2-2.       Note t h a t t h e d e c i m a l e q u i v a l e n t i s simply
            t h e b i n a r y number e x p r e s s e d i n d e c i m a l form.

            A & b i t number c a n have v a l u e s from z e r o t o f i f t e e n .
            O r d i n a r i l y , however, i n t h e BCD code o n l y enough
            combinations are u s e d t o e x p r e s s a l l 10 d e c i m a l
            symbols. I n o r d e r t o e x p r e s s d e c i m a l numbers g r e a t e r
            t h a n 9 , a s e p a r a t e f o u r - b i t group i s used f o r e a c h
            number.           For example: 82,o i s 1000 0010 i n BCD,
            37010 i s 0011 0111 0000, 59110 i s 0101 1001 0001.

            Note t h a t t h e BCD system r e q u i r e s many b i t s t o
            e x p r e s s a d e c i m a l number.
8




    To r e t u r n t o t h e T e k t r o n i x Type 240 Program C o n t r o l
    U n i t , r e c a l l t h a t t h e 1 9 2 - b i t word i s d i v i d e d i n t o
    4-bit characters.                  Each 4 - b i t c h a r a c t e r i s f u r t h e r
    s i m p l i f i e d by g i v i n g e a c h c h a r a c t e r i t s d e c i m a l v a l u e
    i n a s p e c i f i c case. Since each 4-bit c h a r a c t e r i n
    t h i s s i t u a t i o n may c o n t a i n any of t h e s i x t e e n
    p o s s i b l e c o m b i n a t i o n s of b i t s , a c h a r a c t e r i n t h e
    Type 240 may have a v a l u e i n e x c e s s of n i n e . F i g . 2-3
    shows a l l p o s s i b l e v a l u e s .




                           DECIMAL                      CHARACTER




                 1                                         0010




                                                           0110
                                                           0111
                              8                            1000
                              9                            1001
                             10                            1010
                             11                            101 1
                             12                            1100
                             13                            1101
                             14                            1110
                             15                            1111




                  Fig. 2-3.          Pure binary 8 , 4, 2 , 1.
                                                                                        9




                      DEC I MAL




                1        9
                                         0010
                                         001 1
                                         0100




                                          1000
                                         1001
                                                          0010
                                                          001 1
                                                          1000




                                                          Ill0
                                                          1111
                                                                          0101
                                                                          0110
                                                                          0111




                                                                          101 1
                                                                          I100



                     Fig. 2-4. Comparison of some BCD codes.


           T h i s coding i s s i m i l a r t o BCD b u t i n c l u d e s c o m b i n a t i o n s
           which are f o r b i d d e n i n t h e BCD system. To r e d u c e
           c o n f u s i o n , care s h o u l d b e t a k e n n o t t o c a l l t h e Type
           240 c h a r a c t e r system "BCD."            It should i n s t e a d be
           c a l l e d p u r e b i n a r y 8, 4 , 2 , 1.

           O t h e r common codes a r e shown i n F i g . 2-4; t h e 8, 4 ,
4,2,2',1   2 , 1 BCD code i s i n c l u d e d f o r comparison. The 4 , 2 ,
code       2 ' , 1 code i s used i n t h e T e k t r o n i x Type 6R1A. The
Excess-3   Excess-3 code i s formed by a d d i n g b i n a r y 3 t o t h e
code       BCD number.             For example, 010 i n BCD i s 0000; by
           adding 32 t h e sum i s 0000 + 0011 = 0011. Each
           Excess-3 number i s formed by t h e same p r o c e s s . The
           Excess-3 code h a s some a d v a n t a g e s o v e r BCD when
           p e r f o r m i n g a r i t h m e t i c s u b t r a c t i o n i n computers.

           'T.C.     Bartee, D i g i t a l Computer Fundamentals,                 (New York:
            M c G r a w - H i l l , 1 9 6 6 ) , pp 56-7.
10




             In computers designed for business data processing
             it is necessary to work with alphabetic characters
             as well as decimal numeric characters. Such an
             alphanumeric code must contain more than 4 bits since
             26 letters plus 1 0 digits must be encoded. This
             means that at least 6 bits must be used since 5 bits
             contain only 32 unique combinations. A six-bit code
             has often been used. In the past each manufacturer
             has selected or created codes to suit his particular
             devices. In an attempt to standardize, the American
             Standards Association approved a new 7-bit code in
ASCII Code   1964. This code is known as ASCII (American Standard
             Code for Information Interchange). (For verbal
             communication the letters are phoneticized az-key.)
             Fig. 2-5 shows the entire code. Seven bits are used
             so that punctuation marks, symbols, plus telephone
             and teletype abbreviations can be included.

             Examine the column headed by llO1l." The ten decimal
             digits are listed in order. The chart is decoded by
             using the four digits shown on the left and adding
             the three digits at the head of the column. Examples:
             4 = 011 0100 and 7 = 011 0111. The last four binary
             digits express the decimal number in 8, 4 , 2, 1 BCD
             code. Because of this, the ASCII code is compatible
             with instruments designed to use the 8, 4 , 2, 1 BCD
             code. The Type 240 Program Control Unit can be
             addressed by the ASCII code.
                                                               11


                             Standard Code




                                  Legend

      Control Chnctc..                     Graphic Chanrierr

NUL                      C'olumn. Row

son                         2,0
STX                         2'1

ETX                         2,?
EO1                         2/:1

ENQ                         2.4

ACI                         2,3

I t                         2, b

85                          2r7

Hl                          2 In

LF                          2 9
VT                          2110

FF                          2 I1

CR                          2.12
so                           2 l'i
SI                          2 II

DLE                         >,I5

Dc1                         .i,o
                              I

Dcl                         3.11

Dc3                         :II 12

Ocd                         3!13
                            3/14
                            311.:
                            I10
                            5/11
                            5/12
                            5/13
                            5/14
                            5115
                            b/U
                            7/1 I
                            7/12
                            7/13
                            7/14




      Fig. 2-5. USA Standard Code for Information
                Interchange.
12



         Another common numbering system used w i t h i n t h e
octa I   d i g i t a l area i s t h e o c t a l system. The o c t a l system
system   i s based on t h e number 8 . E i g h t d i g i t s are used, 0,
         1, 2, 3 , 4 , 5 , 6 , and 7 . The r u l e s a r e b a s i c a l l y t h e
         same a s f o r b i n a r y o r decimal e x c e p t t h a t p o s i t i o n
         i s based upon powers of 8 . F i g . 2-6 shows decimal
         and o c t a l e q u i v a l e n t s .

         Note t h a t t h e o c t a l system r e q u i r e s more d i g i t s t h a n
         t h e decimal system t o e x p r e s s a number b u t n o t n e a r l y
         as many as t h e b i n a r y system. The o c t a l system
         c o n v e r t s r e a d i l y t o b i n a r y because t h e b a s i s of t h e
         o c t a l system 8 i s a l s o a n even power of two, i . e . ,
         8 = Z3.

         Caution must be used i n v e r b a l l y naming numbers
         e x p r e s s e d i n o c t a l and o t h e r numbering systems. For
         example, l o 8 i s not pronounced t e n because l o 8 = 8
         and should b e c a l l e d "eight" v e r b a l l y .

         The o c t a l numbering system i s used by s e v e r a l d i g i t a l -
         equipment m a n u f a c t u r e r s as a means of e x p r e s s i n g
         b i n a r y numbers by u s i n g fewer symbols. This system
         could be c a l l e d "octal-coded b i n a r y . " For example,
         t h e D i g i t a l Equipment C o r p o r a t i o n makes t h e PDP-8
         f a m i l y of computers. These computers o p e r a t e w i t h
         a 1 2 - b i t word. A word might b e 110 011 001 1 1 To                1 .
         reproduce t h i s word would of c o u r s e r e q u i r e w r i t i n g
         12 d i g i t s . By a r r a n g i n g t h e word b i t s i n groups of
         three b i t s each, and c o n v e r t i n g each group t o i t s
         e q u i v a l e n t i n o c t a l code, t h e same number can be
         w r i t t e n u s i n g 4 o c t a l d i g i t s . The p r o c e s s i s shown
         i n F i g . 2-7.

         Thus t h e 1 2 - b i t word 110 0 1 1 001 1 1 can be w r i t t e n
                                                                    1
         63178. T h i s system i s c o n v e n i e n t because a group of
         3 b i t s can have o n l y 8 p o s s i b l e values. With p r a c t i c e
         t h e numbers from 0002 t o 1 1 can b e memorized and
                                                        1,
         t h e b i n a r y - t o - o c t a l c o n v e r s i o n can b e performed
         mentally.

         T h i s i s p r i m a r i l y used as a s h o r t h a n d method of w r i t i n g
         b i n a r y numbers. A computer program might c o n s i s t of
         s e v e r a l hundred 1 2 - b i t words, each one of which must
         be r e c o r d e d . Think how much w r i t i n g c a n b e saved by
         u s i n g t h e octal-coded b i n a r y method of condensing
         t h e b i n a r y word! Seldom w i l l t h e o c t a l numbering
         system be used  o r a r i t h m e t i c o p e r a t i o n ; i t i s t h e
         p o s i t i o n a l n o t a t i o n which i s of v a l u e h e r e .
                                            13




            64               IO0
            65               101




  Fig. 2-6.      Octal numbering system.




      OCTAL




Fig. 2-7.     Octal-to-binary conversion.
                                                             15




                            BOOLEAN ALGEBRA




             The engineer's understanding of digital circuits and
             digital instruments requires an understanding of a
             different form of algebra from the algebra taught in
             high school. Although unfamiliar to many, this
             algebra is logical and easily understood. Boolean
             algebra, universally used by digital instrument
             designers, differs from conventional algebra in that
             it uses the binary numbering system. Boolean algebra
             contains methods which are specially adaptable to
             digital circuitry and makes the design of such
             circuitry much easier. Conventional algebra is best
             for everyday use, but in the digital area, it may
             needlessly complicate circuit design.

             There is a twofold advantage in using Boolean algebra
             in the digital field. First, Boolean algebra permits
             the engineer to design a circuit or instrument in a
             logical manner. Secondly, it allows another engineer
             or technician to easily understand and follow the
             operation of the device.

two-valued   Boolean algebra has been called the algebra of two-
logic        valued logic. An English mathematician, George Boole,
             published a work in 1854 titled, An Investigation of
             the Laws of Thought. This book contains one of the
             earliest attempts to discuss logic in a mathematical
             sense using special notation similar to mathematical
             symbols.

             Boolean algebra remained almost forgotten until 1938
             when Claude Shannon, a research assistant at MIT,
             published a thesis titled, "A Symbolic Analysis of
             Relay and Switching Circuits." The paper presented
             a method for representing switching circuitry by a
             set of mathematical expressions analogous to the
             expressions of Boolean algebra. The techniques
             developed in Shannon's paper have been improved until
             today they are used in all parts of digital circuit
             design. The economy of reducing circuitry to
             mathematical expressions and simplifying by
             mathematical operations permits the design of even
             the most complex modern computers.
16




                                                  Fig. 3-1.


               Boolean a l g e b r a i s a method of m a n i p u l a t i n g d e d u c t i v e
               l o g i c . I t r e c o g n i z e s o n l y two p o s s i b l e v a l u e s f o r
               a s t a t e m e n t . A s t a t e m e n t i s e i t h e r e n t i r e l y true o r
               e n t i r e l y f a k e . There a r e no halfway c o n d i t i o n s .
               A s t a t e m e n t which i s n o t t r u e must t h e r e f o r e b e f a l s e .
               These p r e m i s e s a l l o w t h e a l g e b r a t o b e used t o
               r e p r e s e n t t h e c o n d i t i o n s found i n e l e c t r i c a l s w i t c h i n g
               circuitry.            Consider t h e s w i t c h of F i g . 3-1.              The
               s w i t c h i s e i t h e r open o r c l o s e d . It h a s no o t h e r
               p o s s i b l e c o n d i t i o n s . By a p p l y i n g t h e b a s i c p r e m i s e
               of Boolean a l g e b r a w e c a n d e f i n e t h e c l o s e d s w i t c h a s
               a " t r u e " c o n d i t i o n and t h e open s w i t c h a s a ' ' f a l s e "
               c o n d i t i o n . The s w i t c h , when n o t open, must b e c l o s e d .
               I f n o t c l o s e d i t i s open. T h i s p a r a l l e l s t h e Boolean
               l o g i c . The c l o s e d c o n d i t i o n c o u l d b e c a l l e d t h e
               f a l s e s t a t e and t h e open c o n d i t i o n a t r u e s t a t e ,
               w i t h o u t a m b i g u i t y . By d e f i n i n g t h e c o n d i t i o n s of a
               t w o - s t a t e d e v i c e i n Boolean t e r m s , t h e symbology of
               t h e a l g e b r a becomes u s a b l e .        Note t h e s w i t c h of
               P i g . 3-1 can a l s o i t s e l f r e p r e s e n t v a r i o u s e l e c t r o n i c
               e l e m e n t s such as t r a n s i s t o r s , d i o d e s , and vacuum
               t u b e s o p e r a t e d i n s w i t c h e d modes.

               Boolean a l g e b r a h a s numerous theorems; however, o n l y
               a few need b e examined h e r e . L e t t e r s are used t o
syrnbo I ogy   r e p r e s e n t q u a n t i t i e s . L e t t e r s c l o s e t o t h e beginning
               of t h e a l p h a b e t are used t o r e p r e s e n t v a r i a b l e v a l u e s
               and l e t t e r s c l o s e t o t h e end of t h e a l p h a b e t r e p r e s e n t
               unknown q u a n t i t i e s .

               Consider t h e c i r c u i t of F i g . 3-2.              W represent the
                                                                          e
 NOT           c o n d i t i o n of s w i t c h SWI by t h e l e t t e r A i f t h e s w i t c h
               i s c l o s e d and by          i f t h e s w i t c h i s open. The b a r
               o v e r A i n d i c a t e s t h e " f a l s e " s t a t e of t h e s w i t c h
               where f a l s e i n d i c a t e s t h e open c o n d i t i o n . An
               -x p r e s s i o n w i t h t h e b a r i s r e a d a l o u d by s a y i n g f o r
               e
               A, "not A."           It follows therefore, t h a t t h e expression
               A i n d i c a t e s , by t h e a b s e n c e of t h e b a r , t h a t t h e
               s w i t c h i s i n a c l o s e d o r t r u e s t a t e . Throughout
               Boolean a l g e b r a t h i s c o n v e n t i o n i s f o l l o w e d .
                                                                                        17




                                           Fig. 3-2.


           The n o t symbol i s used t o r e p r e s e n t a v e r y common
inverter   c i r c u i t f u n c t i o n which i s t h e i n v e r t e r . A s i g n a l
           can b e i n v e r t e d by a t r a n s f o r m e r , a m p l i f i e r , o r by
           v a r i o u s o t h e r means. Assume a two-valued s i g n a l i s
           a s s i g n e d t h e l e t t e r F, I f t h e s i g n a l i s i n v e r t e d
           by a c i r c u i t t h e v a l u e of F must a l s o b e i n v e r t e d .
           S y m b o l i c a l l y F i s p l a c e d a t t h e o u t p u t . The symbol
           f o r a n i n v e r t e r p r e s e n t l y used by T e k t r o n i x on l o g i c
           diagrams i s shown i n Fig. 3-3.

           Considering a g a i n F i g . 3-2, w e c a n r e p r e s e n t t h e
           c o n d i t i o n of s w i t c h SW2 w i t h t h e l e t t e r B . F u r t h e r ,
           w e c a n d e s c r i b e t h e p r e s e n c e o r absence of v o l t a g e
           a c r o s s t h e l o a d by t h e l e t t e r s T ( t r u e ) o r F ( f a l s e ) .
           Thus, T means v o l t a g e i s p r e s e n t and F means v o l t a g e
           i s n o t p r e s e n t . A Boolean a l g e b r a e q u a t i o n may now
           b e w r i t t e n which d e s c r i b e s a l l p o s s i b l e combinations
           of t h e s w i t c h e s SW1 and SW2 and whether o r n o t v o l t a g e
           a p p e a r s a c r o s s t h e l o a d . The e q u a t i o n i s A + B = X ,
           where X r e p r e s e n t s a v o l t a g e a c r o s s t h e l o a d .




                             Fig. 3-3.         Inverter symbol.
18



                           A     B      X                   A     B     X




                                (A)                              (3)


                    F i g . 3-4.       OR f u n c t i o n t r u t h t a b l e s .


OR      Reading a l o u d t h e r e a d e r s h o u l d s t a t e , "A OR B e q u a l s
        X."       The symbol         "+" i s r e a d a s "OR" i n Boolean a l g e b r a ,
        n o t as " p l u s . ' I L i t e r a l l y , t h e e q u a t i o n s t a t e s , "If
        e i t h e r A OR B ( o r b o t h ) i s t r u e , t h e n X i s t r u e . "           To
        p r o p e r l y examine t h i s e q u a t i o n r e q u i r e s t h e u s e of a
        t a b l e l i s t i n g a l l p o s s i b l e combinations of A and B.
        Such a t a b l e i s e a s i l y c o n s t r u c t e d . See F i g . 3-4A.

        T h i s t a b l e shows t h a t t h e r e are f o u r p o s s i b l e
        combinations f o r t h e v a r i a b l e s A and B.            It follows
        t h a t i n a d i f f e r e n t equation with t h r e e v a r i a b l e s
        t h e r e would be e i g h t c o m b i n a t i o n s , and w i t h f o u r
        v a r i a b l e s s i x t e e n combinations, i . e . , t h e number of
                                                                     n
        combinations f o r 2-valued v a r i a b l e s i s 2 , where n
        i s t h e number of d i f f e r e n t v a r i a b l e s . Note t h a t X
        i s t r u e f o r a l l c o n d i t i o n s of A and B e x c e p t where
        A and B are b o t h f a l s e ( s w i t c h e s SW1 and S 2 open).
                                                                        W
truth   The t r u t h t a b l e i s easier t o c o n s t r u c t and i n t e r p r e t
table   by u s i n g t h e b i n a r y number symbols 1 and 0, a s i n
        Fig. 3-4B.            I n t h i s t a b l e wherever a v a r i a b l e i s
        true a 1 i s p l a c e d , wherever a v a r i a b l e i s false, a
        0 is placed.

        The above d i s c u s s i o n d e s c r i b e s a Boolean OR f u n c t i o n .
        For t h e p u r p o s e of s i m p l i f y i n g diagrams wherever a
        c i r c u i t a p p e a r s which could perform a n OR f u n c t i o n ,
        t h e s c h e m a t i c may b e r e p l a c e d by t h e OR-gate symbol.
        The p r e s e n t l y used symbol i s shown i n F i g . 3-5A.
        Three v a r i a b l e s a r e shown. The d i s t i n c t i v e s h a p e
        means t h e OR f u n c t i o n . F i g . 3-5B shows t h e Boolean
        e q u a t i o n f o r t h e OR g a t e .

        One of t h e many p o s s i b l e c i r c u i t s which o p e r a t e s as
        a n OR g a t e i s shown i n F i g . 3-5C.                To r e a l i z e how t h i s
        c i r c u i t f u n c t i o n s , l e t u s d e f i n e two v o l t a g e l e v e l s .
        A v o l t a g e l e v e l of +10 V i s d e f i n e d as a l o g i c a l 0
        i n t h i s c i r c u i t . A ground l e v e l (0 V) i s a l o g i c a l 1.
                                                                                          19




                         (4:                             (~?!                   I:!
                                Fig. 3-5.        OR functions.
           The a b s o l u t e v o l t a g e l e v e l a s s i g n e d t o l o g i c a l 1 i s
           negative with respect t o t h e voltage l e v e l assigned
           t o l o g i c a l z e r o . T h i s i s a n example of n e g a t i v e
negative   l o g i c . The exact v o l t a g e l e v e l s c o u l d b e any v a l u e s
logic      d e s i r e d , b u t i f t h e more n e g a t i v e of t h e two
           represents 1 then t h e l o g i c is negative.

           The reverse case i s p o s s i b l e and o f t e n u s e d . I f , f o r
           example, +lo V w a s l o g i c a l 1 and z e r o v o l t s l o g i c a l
           0 t h e c i r c u i t would b e termed a " p o s i t i v e l o g i c "
           c i r c u i t . Note, however, t h a t t h e c i r c u i t of F i g . 3-5C
           i s not a p o s i t i v e l o g i c OR g a t e . Study of t h e c i r c u i t
           shows t h a t i f A o r B o r C were a t 0 V t h e n t h e o u t p u t
           Y would a l s o b e a t 0 V , and t h e r e f o r e l o g i c a l l y t r u e
           (1) as d e f i n e d above.

           Another i m p o r t a n t Boolean a l g e b r a f u n c t i o n i s c a l l e d
AND        t h e AND f u n c t i o n . F i g . 3-6 i l l u s t r a t e s a c i r c u i t
           which w i l l h e l p one u n d e r s t a n d t h e c o n c e p t of t h e
           AND f u n c t i o n .

           Note t h a t u n l e s s s w i t c h SW1 and S 2 are c l o s e d , no
                                                            W
           voltage is delivered t o t h e load. I f we assign
           symbols, l e t t i n g C s t a n d f o r s w i t c h SW1, D s t a n d f o r
           s w i t c h SW2, and Y s t a n d f o r p r e s e n c e of o u t p u t a c r o s s
           t h e l o a d , t h e n a Boolean e q u a t i o n f o r t h e c i r c u i t may
           be w r i t t e n C      D = Y . Note t h e u s e of t h e symbol
           which means " m u l t i p l y by" i n c o n v e n t i o n a l a l g e b r a .
           I n Boolean t h e ' 1 * 1 1 means "AND."




                                               jLoADl
                                                  E
                         sw 1         sw2




                                                                    1      1          1


                                (A)                                       (5)
                                Fig. 3 - 6 .     AND function.
20




           The e q u a t i o n i s r e a d a l o u d as " i f C i s t r u e AND D i s
           t r u e , then Y is true."             Often an expression omits
           t h e d o t e n t i r e l y b u t i t s p r e s e n c e i s understood; f o r
           example, BEFGH would mean B AND E AND F AND G AND  .                          I

           Fig. 3-6B i l l u s t r a t e s t h e t r u t h t a b l e f o r t h e c i r c u i t
           of Fig. 3-6A.        Note t h a t t h e o n l y t i m e t h e o u t p u t i s
           t r u e i s when t h e i n p u t s are a l l t r u e .

           F i g . 3-7A shows t h e symbol f o r a n AND g a t e as found
           on l o g i c diagrams. Fig. 3-7B shows t h e e q u a t i o n f o r
           t h e g a t e and F i g . 3-7C shows t h e t r u t h t a b l e f o r t h e
           example. Note a g a i n t h a t Y i s t r u e o n l y when A and
           B and C a r e a l l t r u e .

           An example of a c i r c u i t which d i s p l a y s t h e AND
           f u n c t i o n i s shown i n Fig. 3-8.        T h i s i s an AND g a t e
           f o r n e g a t i v e l o g i c . I f any one of t h e i n p u t s A , B ,
           o r C i s f a l s e ( a t +10 V ) , o u t p u t Y w i l l be f a l s e .
           Only i f A - B - C are t r u e ( 0 V) w i l l Y b e t r u e .

           F i g . 3-5C and 3-8 a r e examples of OR and AND g a t e s .
           There are numerous o t h e r ways of b u i l d i n g c i r c u i t s
           and d e v i c e s t o perform t h e s e f u n c t i o n s . The p r i n c i p l e
           methods w i l l b e t r e a t e d i n a l a t e r c h a p t e r .

           A s a n experiment l e t u s re-examine t h e c i r c u i t of
positive   F i g . 3-8, b u t t h i s t i m e w i t h p o s i t i v e l o g i c . We
logic      d e f i n e +lo V a s t h e t r u e l e v e l and 0 V as t h e f a l s e
           level. I f +10 V i s now t h e t r u e l e v e l t h e n Y w i l l
           b e a t +10 V i f A o r B o r C ( o r any combination of
           A, B, C) i s a t 1 0 V.         The t r u t h t a b l e i n v e r t s t h e
           v a l u e s of F i g . 3-7C.

           C o n s t r u c t i n g a new t r u t h t a b l e as i n F i g . 3-9, i t
           i s a p p a r e n t t h e c i r c u i t i s now a n OR g a t e . Thus, a
           n e g a t i v e l o g i c AND g a t e i s a p o s i t i v e l o g i c OR g a t e .
           A t t h i s t i m e , examine F i g . 3-5C and you w i l l f i n d t h a t
           t h e c i r c u i t i s a p o s i t i v e l o g i c AND g a t e . Thus,
           depending on t h e l o g i c chosen f o r a p a r t i c u l a r d e v i c e ,
           t h e g a t e s are d u a l i n n a t u r e . N o t i c e t h a t once t h e
           l o g i c l e v e l s are chosen t h i s d u a l i t y v a n i s h e s .
                                         21




                     E - C =   Y




                      (B)



Fig. 3-7. Three-variable AND function.




        Fig. 3-8. AND gate.




 Fig. 3-9. OR-function truth table.
22




                            -
                            A   +   AB =   t B   3.16




               Table 3-1.   Useful Boolean algebra theorems.

            Boolean algebra is the tool which enables the engineer
            to reduce circuitry to mathematical equations and
            then to simplify these equations. Having studied some
            of the Boolean algebra functions and examined the
            circuit implementation of these functions, we next
            consider some of the theorems and postulates of
            Boolean algebra. Some of these postulates are exactly
            the same as in ordinary algebra. Some, however, are
            exclusive to Boolean algebra. Table 3-1 shows a list
Boo I ean   of some useful Boolean algebra theorems. Some of
theorems    the theorems can be seen to be true by inspection,
            some however, require proof. We shall prove several
            of the theorems.

            The proof may be accomplished by several different
            methods. One method uses the truth table, another
            proves the theorem in mathematical form by applying
            previously proven algebraic theorems to simplify the
            mathematical equations. A third method implements
            the Boolean function in an actual circuit and is
            simplified by inspection. We shall give examples
            of all of these methods. Fig. 3-10A shows a circuit
            which implements Theorem 3 . 1 : A OR A = A . Since the
            quantity A is to be OR'd with itself, A is represented
            as a ganged switch. Whenever the switch is closed,
            we can assume A is true, whenever the switch is open,
            we can assume it is false. The extra contact on the
            switch is redundant.
                                                                 23


                            +1ov




                            t1ov




                     Fig. 3-10.

Therefore, the expression and the circuit could be
simplified to a single switch labeled A as in
Fig. 3-10B.
Theorem 3.10 will be proven by the use of a truth
table. See Fig, 3-11. Since the theorem involves
two variables, A and B, the figure lists all four
combinations of values that A and B can assume. The
values for the term AB are shown in Fig. 3 - l l B . In
Fig. 3-llC we combine the values of A OR`d with the
quantity of A AND B. In Fig. 3 - l l D we find the value
of the expression A OR the quantity A AND B is exactly
the same as the value of A alone. Therefore, when
an expression of the form A + ( A * B ) appears in an
equation, it can be replaced solely by the quantity
A.




                                            [j
                        A   +      AB   A   +   AB           A




                                                     EQUAL

                                            (D)
24




             Theorem 3.11 i s proved m a t h e m a t i c a l l y :

                      A(A+B)           =   A                Theorem 3 . 1 1
                      AA+AB            =   A                Multiply
                      A+AB             =   A                By 3 . 2
                      A                =   A                By 3 . 1 0

             The proof of t h e r e s t of t h e theorems i s l e f t as a n
             e x e r c i s e f o r t h e r e a d e r . Pay s p e c i a l a t t e n t i o n t o
DeMorgan's   theorems 3.12 and 3.13 which a r e known a s DeMorgan's
theorems     theorems. These theorems form t h e b a s i s f o r NAND and
             NOR o p e r a t i o n s d e s c r i b e d i n Chapter 4 .

             The e n g i n e e r may b e p r e s e n t e d w i t h d i g i t a l c i r c u i t
             problems i n s e v e r a l d i f f e r e n t forms. One, h e may be
             g i v e n a series of l o g i c a l s t a t e m e n t s which may be
             t r a n s l a t e d i n t o a c t u a l c i r c u i t r y . Two, h e may d e s i r e
             t o implement a t r u t h t a b l e by a c t u a l c i r c u i t r y . Three,
             h e may b e g i v e n a l o g i c diagram r e p r e s e n t i n g a Boolean
             a l g e b r a f u n c t i o n and, f o u r , h e may b e p r e s e n t e d w i t h
             t h e e x p r e s s i o n i n m a t h e m a t i c a l t e r m s . I n a l l cases
             h e s h o u l d b e aware of t h e methods by which one form
             can b e changed t o any o t h e r . A s a n example, supposing
             t h e problem i s t o implement t h e f o l l o w i n g l o g i c a l
             statement.            "A room w i t h two d o o r s i s t o have a c e n t r a l
             l i g h t i n s t a l l e d w i t h s w i t c h e s a c c e s s i b l e t o each
             d o o r , e i t h e r one of which can t u r n t h e l i g h t e i t h e r
             on o r o f f . " L e t t h e l e t t e r A r e p r e s e n t t h e s w i t c h
             by one d o o r , and t h e B r e p r e s e n t t h e s w i t c h by t h e
             o t h e r d o o r . L e t t h e l e t t e r L s t a n d f o r t h e lamp.
             W f i r s t c o n s t r u c t t h e t r u t h t a b l e . See F i g . 3-12.
               e
             Although t h e c h o i c e i s e n t i r e l y a r b i t r a r y w e assume
             t h a t when a s w i t c h i s c l o s e d i t h a s a l o g i c a l v a l u e
             of 1 and when opened i t h a s t h e l o g i c a l v a l u e of 0.
                                                                       25




                             A      B     L




          Fig. 3-12.       Exclusive-OR t r u t h table.


When A i s z e r o and B i s z e r o t h e lamp w i l l b e o f f --
we a s s i g n t h i s c o n d i t i o n a l o g i c a l v a l u e of z e r o .
I n o r d e r f o r e i t h e r s w i t c h t o c o n t r o l t h e lamp, i f
A o r B changes s t a t e s , t h e lamp must go on. T h e r e f o r e ,
when A i s z e r o and B i s one L must have t h e v a l u e of
one and when A i s one and B i s z e r o , L must a l s o have
a v a l u e of one. F i n a l l y , when A and B are b o t h o n e
t h e lamp must be o f f . The n e x t problem i s t o w r i t e
a Boolean a l g e b r a e x p r e s s i o n f o r t h e t r u t h t a b l e .

L i s t o b e one f o r two p o s s i b l e c o n d i t i o n s ; when A
i s z e r o and B i s one and a l s o when A i s one and B
i s z e r o . When two q u a n t i t i e s are AND'd t o g e t h e r ,
t h e y must b e b o t h e q u a l t o one f o r t h e r e s u l t t o b e
one.      (Theorem 3 . 2 ) . I n t h i s case w e i n d i c a t e A
as z e r o , however, i t s complement            would have a
-a l u e of one when A i s z e r o . T h e r e f o r e , w e w r i t e :
v
AB.     S i m i l a r l y we w r i t e AB. L i s 1 f o r e i t h e r one
- t h e o t h e r combination. The complete e q u a t i o n i s
OR
AB+AB=L.
26




     I n s p e c t i o n of t h e e q u a t i o n shows t h a t i t cannot be
     s i m p l i f i e d u s i n g any of t h e theorems i n T a b l e 3-1.
     Next, w e implement t h e e q u a t i o n i n a l o g i c diagram.
     Wherever two terms are ANDed t o g e t h e r w e u s e t h e
     symbol f o r an AND g a t e ; wherever t h e two terms a r e
     OR'd t o g e t h e r , w e u s e t h e symbol f o r a n OR g a t e .
     The complete diagram i s shown i n F i g . 3-13A.
     I n v e r t e r s are used t o g e n e r a t e t h e n e g a t e d v a l u e s
     of any one of t h e v a r i a b l e s when i t i s r e q u i r e d .

     I n Fig. 3-13B w e show t h e f i n a l          c i r c u i t which u s e s
     s w i t c h e s t o implement t h e l o g i c    f u n c t i o n s . By t h e
     u s e of s i n g l e - p o l e double-throw      s w i t c h e s we g e n e r a t e
     b o t h t h e t r u e and negated v a l u e      for a particular
     variable.

     Re-examining F i g . 3-13A, n o t e t h a t L i s t r u e i f e i t h e r
     A o r B i s t r u e , b u t n o t when b o t h a r e t r u e . T h i s
     p a r t i c u l a r combination i s so u s e f u l t h a t i t h a s been
     g i v e n a s p e c i a l name and a s p e c i a l symbol. The
     implementing c i r c u i t i s c a l l e d an "Exclusive OR"
     g a t e . The symbol i s shown i n F i g . 3-13C which
     diagrams t h e lamp problem u s i n g t h e E x c l u s i v e OR.
     The problem could b e diagrammed as i n F i g . 3-13A o r
     3-13C; however, t h e l a t t e r diagram i s t h e more
     convenient.
                                      27




                 (A)




Fig. 3-13. Exclusive-OR operations.
28




     Fig. 3-14.   S i m p l i f i c a t i o n of complex l o g i c
                  diagrams.
                                                 29




Fig. 3-14A shows another type of problem that may be
encountered. The engineer is presented with an
accomplished logic diagram. His task is to reduce
this diagram to its Boolean algebraic equivalent.
By starting at the input and carefully labeling each
line, noting also where negation or inversion has
taken place, the function may be completely
derived from the diagram. The final equation is
shown at the output. Examining the equation shows
that the equation can be simplified as follows:

AC + ABC + A
           T    =   X
AC + E) + ABC
 (              =   X Factoring and rearranging terms.

A 1 + ABC
 ()             =   x   By 3.7

A + ABC         =   X By 3.4

A               =   X By 3.10

The simplified equation shows that the function
reduces to a straight-wire connection (Fig. 3-14B)
from A to X eliminating all other gates and
connections.
30




     0
     0
     1
     1
          0
          1
          0
          1
                 1
                 1
                 1
                 0
                           :r-rp             Y = A B



         (8)                           (C)




               Fig. 4-1.   NAND functions.
                                                                                   31




                           NAND GATE, NOR GATE,
                               AND FLIPFLOP



       When t h e d e s i g n e n g i n e e r t r i e s t o implement a Boolean
       a l g e b r a f u n c t i o n h e may u s e any common s w i t c h i n g
       d e v i c e , i n c l u d i n g t h e t r a n s i s t o r and vacuum t u b e .
       When o p e r a t e d i n common-emitter mode, t h e t r a n s i s t o r
       a c t s as an i n v e r t e r . Thus, when a t r a n s i s t o r i s used
       t o implement a l o g i c f u n c t i o n ; t h e o u t p u t of t h e
       t r a n s i s t o r , i f taken a t t h e c o l l e c t o r , represents t h e
       i n v e r s i o n of t h e i n p u t o p e r a t i o n . T h i s means t h a t
       when c o n s t r u c t i n g an AND g a t e u s i n g a t r a n s i s t o r ,
       o f t e n t h e o u t p u t r e p r e s e n t s t h e i n v e r s i o n of a n AND
       gate.

       I n F i g . 4-1A w e show a two-input d i g i t a l g a t e ,
       c o n s i s t i n g of two NPN t r a n s i s t o r s Q 1 and 9 2 . I n a
       n e g a t i v e l o g i c system, when i n p u t s A and B a r e t r u e
       t h e y are 0 V.          I n t h i s condition both t r a n s i s t o r s
       are o f f . I f t h e y a r e b o t h o f f , t h e o u t p u t l e v e l i s
       +10 V , t h e f a l s e l e v e l . Examination o f t h e t r u t h
       t a b l e f o r a n AND g a t e shows t h a t t h e o u t p u t i s 0 o r
       f a l s e f o r any combination of i n p u t s A and B e x c e p t
       when both are t r u e . R e f e r r i n g t o F i g . 4-1A a g a i n ,
       i f b o t h t r a n s i s t o r s are o f f , which o c c u r s o n l y when
       A and B are t r u e , Y i s f a l s e . For a l l o t h e r
       c o n d i t i o n s , one o r t h e o t h e r o r b o t h of t h e
       t r a n s i s t o r s i s on because i t s b a s e i s a t t h e f a l s e
       o r p o s i t i v e l e v e l . With e i t h e r t r a n s i s t o r on, Y i s
       e q u a l t o 0 V , t h e t r u e l e v e l . The Y column i s t h e
       i n v e r s e of a n AND g a t e o u t p u t .

NAND   T h i s t y p e of g a t e i s known as a negated AND g a t e
       which i s s h o r t e n e d t o NAND g a t e . The symbol f o r a
       NAND g a t e a p p e a r s i n F i g . 4-1C.         The b a s i c s h a p e of
       t h e g a t e i d e n t i f i e s i t a s an AND f u n c t i o n . The
       c i r c l e a t t h e o u t p u t of t h e g a t e means t h a t t h e s i g n a l
       i s l o g i c a l l y inverted a t t h e p o i n t where t h e c i r c l e
       a p p e a r s . The Boolean a l g e b r a e x p r e s s i o n f o r t h e
       NAND GATE i s w r i t t e n as Y = E. By DeMorgan's theorem
       (3.13) t h i s e x p r e s s i o n c a n a l s o be w r i t t e n as
       Y =        + 3. Note t h a t i n one form of t h e e q u a t i o n ,
       t h e AND f u n c t i o n i s i n d i c a t e d , i n t h e o t h e r form of
       t h e e q u a t i o n t h e OR f u n c t i o n i s i n d i c a t e d .
32




               A    B     Z




                         Fig. 4-2.         NOR functions.


      F i g . 4 - 2 A shows a d i g i t a l l o g i c c i r c u i t u s i n g two
      PNP t r a n s i s t o r s .      I n n e g a t i v e l o g i c system when i n p u t s
      A o r B a r e made t r u e , t h e b a s e of t h e a p p r o p r i a t e
      t r a n s i s t o r i s pulled negative with respect t o t h e
      e m i t t e r which t u r n s t h e t r a n s i s t o r on. A t r u t h t a b l e
      f o r t h i s g a t e i s shown i n F i g . 4 - 2 B .            Output Z i s
      t r u e o n l y when b o t h t r a n s i s t o r s a r e n o t c o n d u c t i n g .
      Both t r a n s i s t o r s a r e o f f o n l y when A and B a r e b o t h
      f a l s e . This r e s u l t i s equivalent t o taking t h e output
      of a n OR g a t e and n e g a t i n g i t . The c i r c u i t i s
      t h e r e f o r e r e f e r r e d t o as a n e g a t e d OR g a t e o r NOR
NOR   g a t e . The symbol  o r a NOR g a t e i s shown i n F i g . 4-2C-
      The b a s i c s h a p e of t h e g a t e i n d i c a t e s a n OR f u n c t i o n .
                                                                                         33




          The p r e s e n c e of a c i r c l e a t t h e o u t p u t i n d i c a t e s
          l o g i c i n v e r s i o n a t t h a t p o i n t . An e q u a t i o n f o r a
          NOR g a t e i s Z =      m.             By DeMorgan's Theorem (3.12)
          t h i s e x p r e s s i o n i s a l s o e q u i v a l e n t t o 2 = Ti B. Thus,
          i n t h e NOR g a t e as i n t h e NAND g a t e b o t h OR and AND
          f u n c t i o n s can b e implemented. N e i t h e r t h e NAND g a t e
          n o r t h e NOR g a t e a r e r e s t r i c t e d t o two i n p u t
          c o n f i g u r a t i o n s . NAND o r NOR g a t e I C ' s a r e a v a i l a b l e
          w i t h up t o f i v e i n p u t s .

          The q u e s t i o n i s f r e q u e n t l y asked as t o why most
          commercially a v a i l a b l e d i g i t a l i n t e g r a t e d - c i r c u i t
          g a t e s are of t h e NAND o r NOR v a r i e t y . The answer i s
NAND or   found by a p p l y i n g DeMorgan's theorem t o NAND and NOR
NOR as    f u n c t i o n s . A s mentioned p r e v i o u s l y DeMorgan's theorem
AND or    shows t h a t i n e i t h e r t h e NOR o r t h e NAND g a t e , both
OR        AND and OR f u n c t i o n s are



◦ Jabse Service Manual Search 2024 ◦ Jabse PravopisonTap.bg ◦ Other service manual resources online : FixyaeServiceinfo